工业微型光谱仪

LiSpec-Mini系列工业微型光谱仪是莱森光学(LiSen Optics)光谱仪系列中一款最新的明星产品,具有信噪比高,速度快等性能特点,且拥有小巧坚固的外壳,并大幅改进了内部设计,体积较小,是做系统集成时的理想模块,同时非常适用于手持式应用,便于随身携带。

产品详情

LiSpec-Mini系列工业微型光谱仪是莱森光学(LiSen Optics)光谱仪系列中一款最新的明星产品,具有信噪比高,速度快等性能特点,且拥有小巧坚固的外壳,并大幅改进了内部设计,体积较小,是做系统集成时的理想模块,同时非常适用于手持式应用,便于随身携带。


LiSpec-Mini系列工业微型光谱仪光谱范围200-1100nm,可根据不同应用需求配置不同的光栅实现不同光谱范围应用,同时可以搭配光源、光纤探头、积分球,标准板、荧光吸收支架、余弦探头实现吸光度、透反射、荧光、辐射测量等应用。因其结构紧凑、具有优异的一致性、良好的热稳定性、可靠性及杂散光低的特点,最短积分时间可达60μs高速测量,抗干扰性能强,非常适合工业、OEM和科研领域应用。

其中LiSpec-Mini300相比LiSpec-HR300体积更小,其探测器2048/4096像素可选分辨率,提升了光谱测量精度,且杂散光控制更优,提升了测量数据的准确性。这些性能优化使LiSpec-Mini300适用于激光诱导击穿光谱(LIBS)方面等手持式设备、工业应用以及科研领域,满足多样化的光谱测量需求。

大标题_画板 5.jpg

蓝色方形图片.jpg环保检测:紫外气体吸收测量、水质吸收测量等吸收测量

蓝色方形图片.jpg光源特性分析:激光波长测量、LED/氙灯/氘灯等辐射测量

蓝色方形图片.jpg工业光谱过程控制:透反射、颜色测量 、荧光测量、光谱传感

蓝色方形图片.jpg化学分析、工业在线原位光谱测量

蓝色方形图片.jpg手持式光谱应用集成

蓝色方形图片.jpg完善二次开发包便于OEM工业集成,支持客户定制


大标题-04.jpg

大标题-55.jpg

备注:其它波长范围可以按用户要求定制

大标题_画板 5.jpg

中标题-42.jpg

拉曼测量系统主要由光谱仪、激光器、拉曼探头、拉曼识别光谱分析软件等组成,拉曼散射主要为斯托克斯和反斯托克斯,斯托克斯拉曼散射通常要比反斯托克斯散射强得多,拉曼光谱仪通常测定的大多是斯托克斯散射,常用拉曼光谱仪有532/785/1064拉曼光谱仪,拉曼测量相对荧光信号会更弱一个数量级,通常我们在针对微弱拉曼信号测量我们要进行表面拉曼增强(SERS)的方法来提高拉曼信号SERS。

莱森光学的光纤光谱仪因其极高的灵敏度和高信噪比的特点,可以搭配激光器、拉曼探头等配件,进行对微弱光谱信号的拉曼测量应用,广泛应用于食品安全、化学实验室、生物及医学等光学方面领域,研究物质成分的判定与确认;还可以应用于刑侦中对毒品的检测及珠宝行业的宝石鉴定。


画板 4-50.jpg


中标题-43.jpg

image.png

画板 2-50.jpg

蓝色方形图片.jpg 颜色测量

中标题-44.jpg

辐射光能量可以量化为辐射通量,即一种表征从光源发出的每秒辐射能量(W)的度量标准。辐射测量一般要通过已知光谱能量分布的标准光源,对光谱仪系统进行绝对辐射标定,才能通过量化参数进行辐射测量。辐射能量与人眼视觉相关联(光度学),就可以得到按照CIE中所定义的表征观测者平均视觉的光谱发光效率函数。因此辐射测量定义辐射度学参数、光度学参数、色度学参数。辐射度学参数主要以辐照度μW/cm2、辐亮度µWatt/sr、辐射通量µWatt以及光子数µMol/s/m2,µMol/m2,µMol/s和µMol光度学参数流明Lumens、光照度Lux、光强度Candela,色度学参数X,Y,Z,x,y,z,u,v,色温、CRI显色指数等

画板 5-50.jpg


蓝色方形图片.jpg 辐照度测量


蓝色方形图片.jpg 色度测量

中标题-45.jpg

光谱仪测量吸光度的方法是将某一波长的平行光通过一块平面平行物体,对透过物体的光束进行检测。由于一部分能量被样品中的分子吸收,检测的入射光的强度要高于透过样品的光强。吸光度被广泛运用于液体和气体的光谱测量技术中,可以对物质进行定量鉴别或指纹认证等,还可以将该应用集成到工业应用环境和客户所关注的测试中。

使用莱森光学模块化光谱仪,可针对特定的吸光度测量来选择不同波长范围和分辨率的光谱仪,并且能在实验室或者现场,对整套光学测量装置进行快速配置。可以基于莱森光学优质的光谱仪,选择紫外光源、不同光程气室、吸收池、特定吸收光路模块、光纤探头进行灵活易用的搭配,针对不同的吸光度试验搭配出多种配置选择。

蓝色方形图片.jpg 液体吸光度


蓝色方形图片.jpg 气体吸光度



中标题-46.jpg

薄膜测量系统是基于白光干涉原理来确定光学薄膜的厚度。白光干涉图样通过数学函数被计算出薄膜厚度。对于单层膜,若已知薄膜介质的n和k值即可计算出它的物理厚度。测量的膜层厚度从10 nm到50 um,分辨率可达1 nm。薄膜测量应用于半导体晶片生产工业,此时需要监控等离子刻蚀和沉积加工过程。还可用于其它需要测量在金属和玻璃基底上镀制透明膜层的领域,如金属表面的透明涂层和玻璃衬底。

47.png


中标题-47.jpg

随着工业的蓬勃发展,对材料本身特性的质量控制愈加严格,利用光纤光谱仪进行快速准确的透/反射光谱的测量技术也日益成熟。透/反射光谱测量是光谱测量的基本手段,通常需要使用光谱仪、光源、光纤、测量支架、标准参比样品、和测量软件等设备。对于不同种类的样品,为了获取更好的光谱数据,这两种基本模式又会演化为更多的形式。

光纤光谱仪采用光纤光路,解决了光路在仪器集成中的限制。并且莱森光学的光纤光谱仪具有体积小,稳定性高,支持软件二次开发,配件丰富等特点,已经成功的广泛应用于玻璃、高分子材料等行业的测试。莱森光学为用户提供了以光谱仪为核心的光谱测量设备,利用这些配置丰富的设备,即可搭建各种常见的光谱测量系统。

蓝色方形图片.jpg 反射测

蓝色方形图片.jpg 透射测量


中标题-48.jpg

荧光物质在特定波长的辐射能量辐射下,能发射出具有一定光谱分布的辐射。荧光光谱测量灵敏度高、选择性强、样品用量少、方法简便且具备环保性,具有如上诸多优点,所以在工程应用中有着广泛的应用,如在食品加工过程中用于食品安全的监测、生物医学中用于病变的荧光诊断、地质学中用于石油矿物勘探、土壤矿物成分的测定以及物质中微量元素的检测等等。

荧光光谱测量通常需要高灵敏度的光谱仪。对于大多数荧光应用来说,产生的荧光能量只相当于激发光能量的3%左右。荧光的光子能量比激发光的光子能量小,波长长,而且一般都是在各个方向上辐射能量的散射光。莱森光学光纤光谱仪采用了可更换狭缝、可选择的波长范围和分辨率设计,使客户能根据自己的需求配置自由搭配适合参数的荧光测量系统。


53.png